1. 图形CSS化2020-08-17

    c=1, w=2, b=512, kB=1000, K=1024, MB=1000*1000, M=1024*1024, xM=M GB=1000*1000*1000 G=1024*1024*1024, 以及T, P, E, Z ,Y The Shapes of CSS All of the below use only a single HTML element. Any kind of CSS goes, as long as it's supported in at ...

    阅读全文
  2. 蓝色配色2020-08-17

    https://ww1.sinaimg.cn/mw690/74cf050fjw1ejy37k1ognj20c818gmyi.jpg ...

    阅读全文
  3. 数独2020-08-17

    数独是一种风靡全球的智力游戏,也称为Sudoku,Number Place。正规的数独题目需要保证每个题目仅有一个解。   数独规则 标准数独由9行,9列共81的小格子构成。 分别在格子中填入1到9的数字,并满足下面的条件。 每一行都用到1,2,3,4,5,6,7,8,9 每一列都用到1,2,3,4,5,6,7,8,9 每3×3的格子都用到1,2,3,4,5,6,7,8,9   Sudo1: htt ...

    阅读全文
  4. 应用场景:京东,淘宝等双十一活动多多,送券,满多少送多少等买很多物品后,再使用优惠券等,不同的下单方式都会有不同的实惠。 比如现有下面的活动,图书狂欢节,每满100减50。结算时还可以使用优惠券。现有两张现金结算券,一张是满300减100(券1),一张是满150减50(券2)。用户希望购买下面的书单。 《书1》价格 175 《书2》价格 22.6 《书3》价格 37.5 《书4》价格 65.6 《书5》价格 160.9 《书6》价格 84.6 《书 ...

    阅读全文
  5. 大部分云服务商都会提供CDN服务。CDN服务即为Content Delivery Network(内容分发网络)。其主要目的是使用户就近获取所需内容,从而提高用户访问响应速度,降低网络拥塞。 官方解释: CDN是构建在现有网络基础之上的智能虚拟网络,依靠部署在各地的边缘服务器,通过中心平台的负载均衡、内容分发、调度等功能模块,使用户就近获取所需内容,降低网络拥塞,提高用户访问响应速度和命中率。CDN的关键技术主要有内容存储和分发技术。 那么CDN是如何实现的呢? ...

    阅读全文
  6. 域名解析 域名解析就是域名到IP地址的转换过程。IP地址是网路上标识您站点的数字地址,为了简单好记,采用域名来代替ip地址标识站点地址。域名的解析工作由DNS服务器完成。 A记录 A记录是用来指定主机名(或域名)对应的IP地址记录。用户可以将该域名下的网站服务器指向到自己的web server上。同时也可以设置您域名的二级域名。 MX记录 MX记录邮件路由记录,用户可以将该域名下的邮件服务器指向到自己的mail server上,然后即可自行操控所有的邮箱设置。您只需在线填写您服 ...

    阅读全文
  7.   Vedio:https://learning.oreilly.com/videos/redis-bootcamp-for/9781800202009/9781800202009-video11_1 Redis思维导图   redis学习文档:https://www.runoob.com/redis/redis-hyperloglog.html   ...

    阅读全文
  8. geohash2020-05-27

    geohash.org   ...

    阅读全文
  9. 这篇是腾讯云的思维导图。腾讯云的产品分类显的更为清晰,也是大体三层机构,比较让人记忆更深刻。 大体分为7大类。 基础仍然是云的产品核心。 各项展开:                                           ...

    阅读全文
  10. 这篇是阿里云的产品思维导图。可以看出对比AWS和Azure它的分类层级更深一层更细化一些,产品总类也更多些。 先看一下两层机构,再一层层展开。 阿里云产品分为9大类,比腾讯云多分两大类,比Azure和AWS少分8大类。 各大类展开:                                   ...

    阅读全文
  11. 虽然使用了云主机已经五六年了,先后租用过电信的天翼云,腾讯的腾讯云,阿里的阿里云,仍然对云的理解还是个外行。最大的感触就是越来越便宜了。当初的天翼云一个1G1G2M的配置就要2000多,现在阿里的双核8G8G5M三年也只要1000出头点。腾讯云也在发力,不缺钱。京东云估计也不缺钱但缺人才。 本外行试图来分析一下当今云时代的各路枭雄的发展现状。先看看Azure, Google, AWS, 阿里云,腾讯云,最后再看看不起眼的Oracle云。 所有信息来源于各自的官方网站,先由表及里慢慢熟 ...

    阅读全文
  12. 虽然使用了云主机已经五六年了,先后租用过电信的天翼云,腾讯的腾讯云,阿里的阿里云,仍然对云的理解还是个外行。最大的感触就是越来越便宜了。当初的天翼云一个1G1G2M的配置就要2000多,现在阿里的双核8G8G5M三年也只要1000出头点。腾讯云也在发力,不缺钱。京东云估计也不缺钱但缺人才。 本外行试图来分析一下当今云时代的各路枭雄的发展现状。先看看Azure, Google, AWS, 阿里云,腾讯云,最后再看看不起眼的Oracle云。 所有信息来源于各自的官方网站,先由表及里慢慢熟 ...

    阅读全文
  13. 4220

    MMD is a cloud-based service that brings together M365 Enterprise  and adding these features. End-user device deployment IT service management and operations Security monitoring and response End-user support. Current challenges ...

    阅读全文
  14. 动态规划来解决一些最优解的问题,常常可以将暴力算法的指数级时间复杂度降到O(n2)和O(n3)。动态规划并不难,只要按四个步骤就能找出最优解。 刻画一个最优解的结构特征。 递归地定义最优解的值。 计算最优解的值,通常使用自底向上的方法。 利用计算出的信息构造一个最优解。 动态规划的两个要素:最优子结构和子问题重叠。 最优子结构:如果一个问题的最优解包含其子问题的最优解,我们就称此问题具有最优子结构性质。 子问题重叠:递归算法反复求解相同的子问题, ...

    阅读全文
  15. 第一抽屉原理 原理1: 把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。 抽屉原理 抽屉原理 证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。 原理2:把多于mn(m乘n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。 证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。 原理3:把无 ...

    阅读全文
  16. lowbit2020-04-08

    lowbit = m & -m = 2的k次方 k为x从最右到左连续0的个数。(0除外) 这里利用的负数的存储特性,负数是以补码存储的,对于整数运算 x&(-x)有 ● 当x为0时,即 0 & 0,结果为0; ●当x为奇数时,最后一个比特位为1,取反加1没有进位,故x和-x除最后一位外前面的位正好相反,按位与结果为0。结果为1。 ●当x为偶数,且为2的m次方时,x的二进制表示中只有一位是1(从右往左的第m+1位),其右边有m位0,故x取反 ...

    阅读全文
  17. 有这样的一个数列:1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...  数字递增十分快,所以让我们想到 ...

    阅读全文
  18. 4820

    字符串搜索问题之前没有好好想,正常使用自带API或者正值表达式,或者第一反应就是常规的暴力搜索。其实这里面有很多很好玩的算法。Robin-Karp算法比较容易理解,而利用有限自动机进行匹配就开始晕了,最后的KMP算法代码不多,但是计算前缀的方法真是很神奇,静下心想了好久才开窍。神奇!神奇!很神奇。 本文讲一个很神奇的搜索字符串中以某一位开始的最长回文的算法。问题可以简化为从字符串首位开始的最长回文。 问题分析: public String getLonggestLeftPa ...

    阅读全文
  19. 参考文章 https://www.runoob.com/go/go-environment.html Go的官方文档地址为 https://golang.google.cn/doc/, 里面包括了安装文档,go的简单教程,包含如何写go代码,选用什么IDE, 如何troubleshooting,一些常见问题,以及go community的wiki. 同时也列出 Package Documentation(The documentation for the Go ...

    阅读全文